Technical Documentation
In-depth technical details for scientists and engineers
Mathematical Foundations
Transformer Architecture
The transformer architecture processes sequences through self-attention and feed-forward layers. For an input sequence X ∈ ℝn×d:
Layer Normalization (RMSNorm)
HugeModel uses RMSNorm instead of LayerNorm for efficiency:
RMSNorm(x) = x / √(mean(x²) + ε) × γ
Where γ is the learnable scale parameter and ε = 10-6 for numerical stability.
Self-Attention
Attention(Q, K, V) = softmax(QKT / √dk) × V
Where:
Q = XWQ(Query projection)K = XWK(Key projection)V = XWV(Value projection)dk= head dimension (typically 128)
Feed-Forward Network (SwiGLU)
HugeModel uses SwiGLU activation:
FFN(x) = (SiLU(xWgate) ⊙ xWup) × Wdown
Where SiLU(x) = x × σ(x) and ⊙ denotes element-wise multiplication.
Attention Mechanism Details
Grouped Query Attention (GQA)
GQA reduces memory bandwidth by sharing K and V projections across multiple Q heads:
GQA Implementation
// Group size: num_heads / num_kv_heads
size_t kvGroupSize = numHeads / numKVHeads; // e.g., 32/4 = 8
for (size_t h = 0; h < numHeads; ++h) {
size_t kvHead = h / kvGroupSize; // Map Q head to KV head
// Compute attention scores for this Q head
// using K[kvHead] and V[kvHead]
for (int t = 0; t < seqLen; ++t) {
float score = 0.0f;
for (size_t d = 0; d < headDim; ++d) {
score += Q[h * headDim + d] * K[t * kvDim + kvHead * headDim + d];
}
scores[t] = score * scale; // scale = 1/√d_k
}
// Softmax and weighted sum with V...
}
Rotary Position Embedding (RoPE)
RoPE encodes position information by rotating query and key vectors:
RoPE(x, pos) = Rθ,pos × x
Where for dimension pair (2i, 2i+1):
θi = base-2i/d
x'[2i] = x[2i] × cos(pos × θi) - x[2i+1] × sin(pos × θi)
x'[2i+1] = x[2i] × sin(pos × θi) + x[2i+1] × cos(pos × θi)
Default base θ = 10000 (Qwen2.5) or 500000 (Llama 3+)
RoPE CUDA Kernel
__global__ void applyRoPEInlineKernel(
__half* Q, __half* K,
int seqLen, int numHeads, int numKVHeads, int headDim,
int posOffset, float ropeTheta)
{
int pos = blockIdx.x + posOffset;
int headIdx = blockIdx.y;
int d = threadIdx.x * 2; // Process pairs
if (d >= headDim) return;
float freq = 1.0f / powf(ropeTheta, (float)d / headDim);
float angle = pos * freq;
float cos_val = cosf(angle);
float sin_val = sinf(angle);
// Apply rotation to Q
float q0 = __half2float(Q[headIdx * headDim + d]);
float q1 = __half2float(Q[headIdx * headDim + d + 1]);
Q[headIdx * headDim + d] = __float2half(q0 * cos_val - q1 * sin_val);
Q[headIdx * headDim + d + 1] = __float2half(q0 * sin_val + q1 * cos_val);
// Similarly for K...
}
MoE Routing Algorithms
Router Architecture
The Mixture-of-Experts router selects which experts process each token:
h ∈ ℝᵈ] --> B[Gate Projection
W_gate ∈ ℝᵈˣⁿ] B --> C[Logits
z ∈ ℝⁿ] C --> D{Gating Type} D -->|Softmax| E[softmax z] D -->|Sigmoid| F[σ z] E --> G[Top-K Selection] F --> G G --> H[Expert Indices
+ Weights] end style Routing fill:#fff8e1
Gating Functions
| Gating Type | Formula | Use Case | Properties |
|---|---|---|---|
| Softmax | wi = exp(zi) / Σexp(zj) |
Mixtral, DeepSeek | Σwi = 1, competitive |
| Sigmoid | wi = σ(zi) = 1/(1+e-zi) |
Llama 4 | Independent, 0 ≤ wi ≤ 1 |
Expert Computation
For Top-K selected experts:
output = Σi∈TopK wi × Experti(x)
Each expert is a SwiGLU FFN:
Experti(x) = (SiLU(xWgate,i) ⊙ xWup,i) × Wdown,i
MoE Forward Pass
void runMoELayer(const float* hidden, float* output, int layerIdx) {
// 1. Router: compute expert weights
float gateLogits[numExperts];
gemm(hidden, gateWeights[layerIdx], gateLogits, 1, numExperts, hiddenSize);
// 2. Select Top-K experts
auto [topK_indices, topK_weights] = selectTopK(gateLogits, K);
// 3. Normalize weights (for softmax gating)
if (gatingType == SOFTMAX) {
float sum = 0;
for (int i = 0; i < K; i++) sum += topK_weights[i];
for (int i = 0; i < K; i++) topK_weights[i] /= sum;
}
// 4. Compute expert outputs
memset(output, 0, hiddenSize * sizeof(float));
for (int i = 0; i < K; i++) {
int expertId = topK_indices[i];
float weight = topK_weights[i];
// Load expert from cache or mmap
Expert* expert = expertCache->getOrLoad(layerIdx, expertId);
// FFN computation
float expertOut[hiddenSize];
expert->forward(hidden, expertOut);
// Weighted accumulation
for (int j = 0; j < hiddenSize; j++) {
output[j] += weight * expertOut[j];
}
}
}
Quantization Mathematics
Q4_K Dequantization
The Q4_K format stores 256 weights in 144 bytes:
Block Layout (144 bytes)
| Offset 0-1 | d | FP16 super-block scale |
| Offset 2-3 | dmin | FP16 super-block min |
| Offset 4-15 | scales[12] | 6-bit scales + 4-bit mins (packed) |
| Offset 16-143 | qs[128] | 4-bit quantized values (2 per byte) |
Q4_K Dequantization Algorithm
void dequantQ4KRow(const uint8_t* src, float* dst, size_t numElements) {
constexpr size_t QK_K = 256;
constexpr size_t blockSize = 144;
for (size_t ib = 0; ib < numElements / QK_K; ++ib) {
const uint8_t* block = src + ib * blockSize;
// Extract FP16 scales
float d = fp16_to_fp32(*(uint16_t*)(block + 0));
float dmin = fp16_to_fp32(*(uint16_t*)(block + 2));
const uint8_t* scales = block + 4;
const uint8_t* qs = block + 16;
float* y = dst + ib * QK_K;
// Process 4 groups of 64 elements
int scaleIdx = 0;
for (int j = 0; j < QK_K; j += 64) {
// Extract 6-bit scale and min for each group
uint8_t sc, m;
getScaleMinK4(scaleIdx, scales, &sc, &m);
float d1 = d * sc, m1 = dmin * m;
getScaleMinK4(scaleIdx + 1, scales, &sc, &m);
float d2 = d * sc, m2 = dmin * m;
// Low nibbles -> first 32 elements
for (int l = 0; l < 32; ++l) {
*y++ = d1 * (qs[l] & 0xF) - m1;
}
// High nibbles -> next 32 elements
for (int l = 0; l < 32; ++l) {
*y++ = d2 * (qs[l] >> 4) - m2;
}
qs += 32;
scaleIdx += 2;
}
}
}
Quantization Error Analysis
Expected quantization error for different formats:
| Format | Bits/Weight | RMSE | Perplexity Impact |
|---|---|---|---|
| FP16 | 16 | ~0 | Baseline |
| Q8_0 | 8.5 | ~0.001 | +0.01 |
| Q6_K | 6.5 | ~0.003 | +0.05 |
| Q4_K | 4.5 | ~0.008 | +0.15 |
Memory Optimization Techniques
Unified Memory on GB10
The NVIDIA GB10 provides 128GB of unified CPU/GPU memory:
Memory-Mapped I/O Strategy
// Zero-copy model loading with mmap
void* loadModelMmap(const char* path) {
int fd = open(path, O_RDONLY);
struct stat sb;
fstat(fd, &sb);
void* mapped = mmap(nullptr, sb.st_size,
PROT_READ,
MAP_PRIVATE | MAP_POPULATE, // Prefetch
fd, 0);
// Advise kernel about access pattern
madvise(mapped, sb.st_size, MADV_SEQUENTIAL);
return mapped;
}
// Direct GPU access to mmap'd region (via unified memory)
__global__ void dequantKernel(const uint8_t* mmapWeights, __half* gpuOutput) {
// mmapWeights can be accessed directly from GPU on GB10
// due to unified memory architecture
}
KV Cache Memory Management
The Paged KV Cache optimizes memory for variable-length sequences:
Memory Calculation
KV_Memory = 2 × num_layers × seq_len × kv_dim × sizeof(FP16)
For Qwen2.5-3B with seq_len=2048:
= 2 × 36 × 2048 × 256 × 2 bytes = 75.5 MB
Numerical Stability
FP32 Accumulation
HugeModel uses FP16 storage with FP32 accumulation to prevent precision loss:
cuBLAS Mixed Precision
void gemmFP16_FP32Accum(cublasHandle_t cublas,
cublasOperation_t opA, cublasOperation_t opB,
int M, int N, int K,
float alpha,
const __half* A, int lda,
const __half* B, int ldb,
float beta,
__half* C, int ldc)
{
cublasGemmEx(
cublas,
opA, opB,
M, N, K,
&alpha, // FP32 scaling
A, CUDA_R_16F, lda, // FP16 input A
B, CUDA_R_16F, ldb, // FP16 input B
&beta,
C, CUDA_R_16F, ldc, // FP16 output C
CUBLAS_COMPUTE_32F, // FP32 internal accumulation
CUBLAS_GEMM_DEFAULT
);
}
Softmax Numerical Stability
Naive softmax can overflow. We use the stable version:
softmax(x)i = exp(xi - max(x)) / Σ exp(xj - max(x))
__global__ void stableSoftmax(float* x, int n) {
__shared__ float sMax, sSum;
// 1. Find max (parallel reduction)
float localMax = -FLT_MAX;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
localMax = fmaxf(localMax, x[i]);
}
// ... reduction to get global max ...
// 2. Compute exp(x - max) and sum
float localSum = 0.0f;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
x[i] = expf(x[i] - sMax);
localSum += x[i];
}
// ... reduction to get global sum ...
// 3. Normalize
for (int i = threadIdx.x; i < n; i += blockDim.x) {
x[i] /= sSum;
}
}
Performance Analysis
Computational Complexity
| Operation | FLOPs per Token | Memory Bandwidth |
|---|---|---|
| QKV Projection | 6 × d × d | 3 × d² × 2B |
| Attention (per head) | 4 × seq × dhead | 2 × seq × dhead × 2B |
| FFN (SwiGLU) | 8 × d × 4d | 3 × 4d² × 2B |
| MoE Expert (K active) | K × 8 × d × intermediate | K × 3 × intermediate × d × 2B |
Bottleneck Analysis
Optimization Opportunities
1. GPU Dequantization
Current: CPU dequant + PCIe transfer
Improvement: Direct GPU kernel dequantization
Expected speedup: 5-10x for memory-bound operations
2. Async Expert Prefetch
Current: Synchronous expert loading
Improvement: Predict and prefetch next experts
Expected speedup: Hide 80% of load latency
3. Flash Attention
Current: Standard attention with full materialization
Improvement: Tiled, fused attention kernel
Expected speedup: 2-3x for long sequences